RELATIONSHIP BETWEEN THE SEVERITY OF OBSTRUCTIVE SLEEP APNOEA, LOW-GRADE-INFLAMMATION AND HEME OXYGENASE-1 IN MORBIDLY OBESE PATIENTS, BEFORE AND AFTER BARIATRIC SURGERY

R.Tirado¹, MJ.Masdeu², L.Vigil², P.Rebasa³, A.Luna³, S.Montmany³, M.Villaplana¹, B.Pons¹, M.Rigla¹ and A.Caixàs¹

¹Endocrinology and Nutrition, ² Pneumology and ³ Surgery Departments. Hospital de Sabadell. Corporació Sanitaria Parc Taulí. Sabadell. Institut Universitari Parc Taulí- UAB Universitat Autònoma de Barcelona. Campus d'Excel·lència Internacional 08193 Bellaterra, Sabadell, Spain.

INTRODUCTION AND OBJECTIVES

- HO-1 is a new adipokine with a protective role against inflammation and hypoxia¹. Morbidly obese (MO) patients presents with high circulating levels or adipose tissue expression of HO-1². Obstructive sleep apnoea (OSA) presents high mRNA HO-1 levels in whole blood³. MO patients with OSA presents with high low grade inflammation (LGI)⁴ and recurrent episodis of intermittent hypoxia⁵.
- Objective: to study in patients with MO and OSA the relationship between HO-1, OSA severity and LGI, and the effect of bariatric surgery on them.

METHODS

- 66 MO with OSA, without Continuous Positive Airway Pressure (CPAP) treatment, were studied before and 1 year after bariatric surgery (BS).
- OSA diagnosis was given after an overnight conventional polisomnography (CE-Series Compumedics, Victoria, Australia).
- HO-1 (Elisa Kit bioNova científica, s.l.Madrid) and LGI; TNFα, IL-6, IL-1β, PCR and adiponectin (Milliplex Catalog, Merck Millipore, Madrid), were measured.
- BMI, waist circumference, % body fat by bioelectrical impedance (TANITA) and HOMA insulin resistance index were also assessed.
- For statistical analysis SPSS-PC-plus version 19 was used.

RESULTS

- We studied 12 male and 28 female, 42,3 ± 10,2 years old. Twenty (30%) had mild OSA, 16 (24%) moderate and 30 (46%) severe. Forty-nine underwent Roux-en-Y gastric bypass and 17 sleeve gastrectomy, according to the local protocol. Excess weight loss was 69,98 ± 13,30%.
- Plasma HO-1 did not differ between OSA groups $(6,33 \pm 1,72 \text{ ng/mL mild vs } 7,07 \pm 2,49 \text{ ng/mL moderate vs } 7,64 \pm 3,78 \text{ ng/mL severe, p=0,32)}$. After surgery, HO-1 levels decreased significantly, however, this effect was only observed in those patients who had severe OSA. The decrease in HO-1 levels (DIFHO-1) correlated with HOMA improvement (DIFHOMA) but not with the improvement of the other adipokines.

Parameters evaluated before vs after surgery

Parameters	BS	AS
BMI (Kg/m ²)	45,6 ± 6,19	29,0 ± 3,69*
Waist circumference (cm)	133,1 ± 12,5	100,9 ± 10,6*
Body fat (%)	49,5 ± 5,59	31,8 ± 8,74*
HOMA	4,14 ± 2,14	1,36 ± 0,95*
HO-1 (ng/mL)	7,11 ± 2,99	6,59 ± 2,47°
TNF-α (pg/mL)	2,62 ± 1,53	2,13 ± 1,24°
IL-6 (pg/mL)	0,64 ± 0,69	0,39 ± 0,58*
IL-1β (pg/mL)	0,67 ± 0,61	0,46 ± 0,47°
PCR (mg/dL)	1,38 ± 3,10	0,19 ± 0,26°
Adiponectin (µg/mL)	12,3 ± 8,93	26,2 ± 15,3*
AHI (events/h)	33,8 ± 26,1	9,14 ± 9,71*
CT90 (%)	9,82 ± 16,4	1,14 ± 3,94*
Arousal index (events/h)	20,0 ± 16,9	14,1 ± 8,44*

AHI: Apnoea Hypopnoea index; CT90: time percentage with SpO2 <90%. Data are mean \pm ED. $^{\mathbf{o}}$ p < 0,05, * p < 0.001, vs before surgery (BS).

HO-1 levels BS vs AS in mild, moderate and severe OSA, ^Op < 0.05

CONCLUSION

Improvement of plasma HO-1 in MO patients after bariatric surgery is related to the severity of OSA and the degree of insulin resistance but not to LGI.

BIBLIOGRAPHY

1.Abraham NG, Tsenovoy PL, McClung J, Drummond GS. Heme oxygenase: a target gene for anti-diabetic and obesity. Curr Pharm Des. 2008;14(5):412-21.

2.Lehr S, Hartwig S, Lamers D, Famulla S, Müller S, Hanisch FG, et al. Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics. 2012;11(1):M111.010504.

3.Hoffmann MS, Singh P, Wolk R, Romero-Corral A, Raghavakaimal S, Somers VK. Microarray studies of genomic oxidative stress and cell cycle responses in obstructive sleep apnea. Antioxid Redox Signal. 2007;9(6):661-9.

4.Bonsignore MR, McNicholas WT, Montserrat JM, Eckel J. Adipose tissue in obesity and obstructive sleep apnoea. Eur Respir J. 2012;39(3):746-67.

5.Lloberes P, Durán-Cantolla J, Martínez-García M, Marín JM, Ferrer A, Corral J, et al. Diagnosis and treatment of sleep apnea-hypopnea syndrome. Spanish Society of Pulmonology and Thoracic Surgery. Arch Bronconeumol. 2011;47(3):143-56.

Funding: Supported by CIRI Grants 2014 Fundació Parc Taulí.

