# Cardiac status after long-term growth hormone replacement therapy in adult growth hormone deficient patients. A single centre audit based on echocardiographic investigations before and during GH replacement therapy



## **Background and aim**

Growth hormone (GH) is known as a hormone involved in regulation and influence of somatic growth but also of a long variety of metabolic pathways. GH exerts its effect in the body directly and indirectly, by stimulating insulin like growth factor-1 (IGF-1) production. Both GH and IGF-1 receptors are expressed in cardiac myocytes.

GH deficiency may develop deformities of cardiac structure as well as impaired systolic and diastolic functions. Further, earlier investigations indicate that IGF-1 excess has an hypertrophic effect on cardiac cells.

### **Patients and methods**

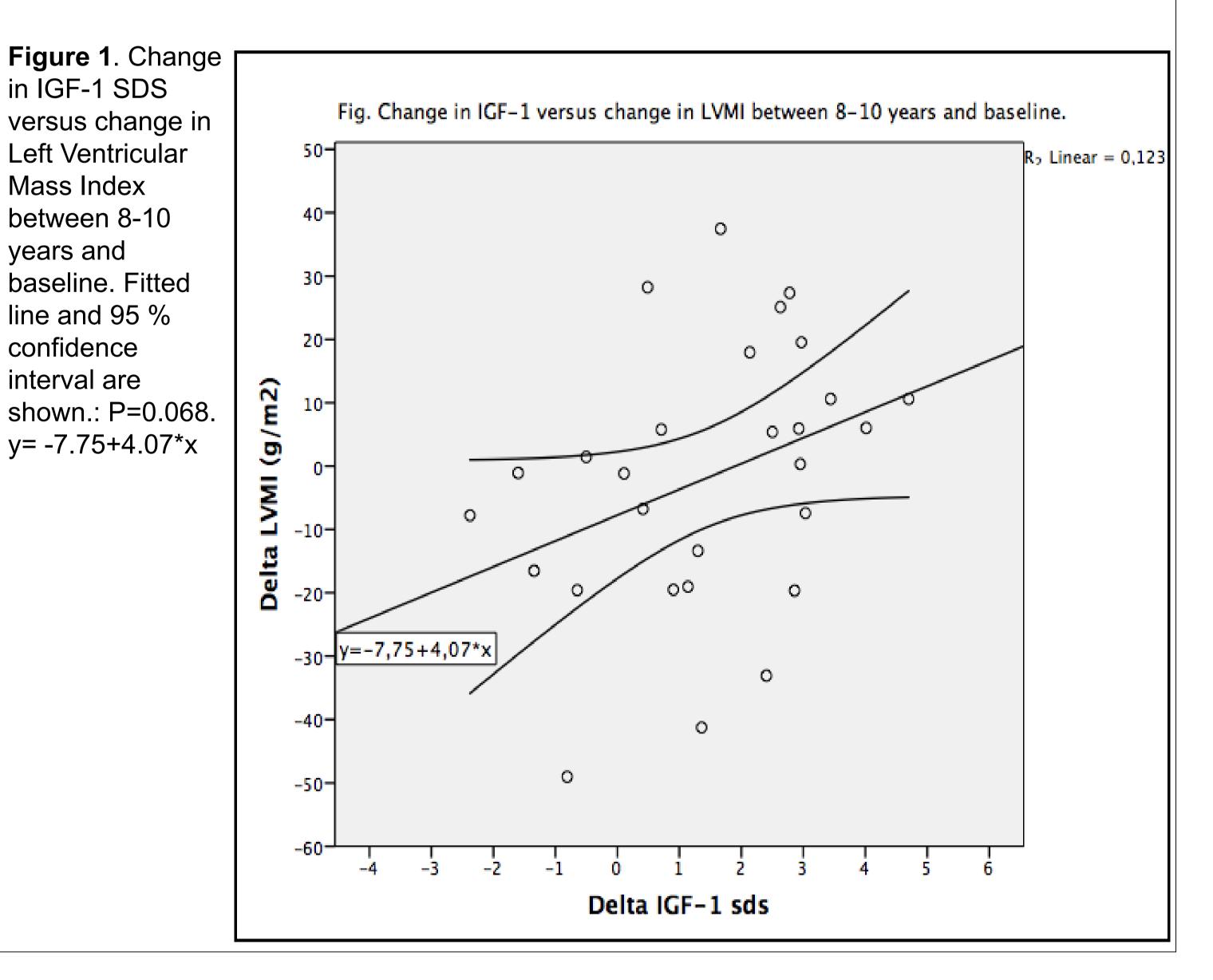
All GH deficient patients followed at Rigshospitalet with available echocardiography data at treatment baseline, 3-5 years and 8-10 years follow up were included. 25 naïve GH deficient patients i.e. patients who had never received GH therapy before, and 16 semi-naive patients i.e. patients previously on GH substitution therapy, but who had not received GH within 6 months before baseline evaluation.

Ultrasonic and biochemical data were collected retrospectively.

The aim of this study was to determine the effects of long-term GH treatment on heart anatomy and function among adult GH deficient patients.

Echocardiographic assessments were performed in accordance with the recommendations of the American Society of Echocardiography with focus on left ventricular structure and function.

### Results


**Table 1.** Baseline characteristics of N = 41 GH deficient patients. Results are expressed as N (%) or mean  $\pm$  standard error of the mean if normally distributed, and otherwise as median (range).

| Baseline characteristics                                                      | N (%)                 |
|-------------------------------------------------------------------------------|-----------------------|
| Gender                                                                        |                       |
| - Female                                                                      | 16 (39)               |
| - Male                                                                        | 25 (61)               |
| Growth hormone deficiency onset                                               |                       |
| - Adult-onset                                                                 | 23 (56)               |
| - Childhood-onset                                                             | 18 (44)               |
| Growth hormone therapy                                                        |                       |
| - Naive                                                                       | 25 (61)               |
| - Semi-naive                                                                  | 16 (39)               |
| Etiology of pituitary disease                                                 |                       |
| - Craniopharyngioma                                                           | 3 (7)                 |
| <ul> <li>Secreting pituitary adenoma</li> </ul>                               | 3 (7)                 |
| <ul> <li>Nonfunctioning pituitary adenoma</li> </ul>                          | 9 (22)                |
| <ul> <li>Other extrasellar tumors</li> </ul>                                  | 10 (25)               |
| <ul> <li>Cranial irradiation due to malignancy outside the cranium</li> </ul> | 1 (2)                 |
| - Idiopathic                                                                  | 1 (2)                 |
| - Other                                                                       | 14 (35)               |
| IGF-I SDS                                                                     | -0.95 $\pm$ 0.3       |
| Height, cm                                                                    | 171.9 $\pm$ 1.8       |
| Weight, kg                                                                    | $80.9\pm2.6$          |
| Body mass index, kg/m2                                                        | $27.3\pm0.7$          |
| Body surface area, m <sup>2</sup>                                             | 1.9 $\pm$ 0.0         |
| Systolic blood pressure, mmHg                                                 | 120 $\pm$ 3           |
| Diastolic blood pressure, mmHg                                                | $77\pm2$              |
| Total cholesterol, mmol/L                                                     | 4.9 $\pm$ 0.2         |
| LDL, mmol/L                                                                   | $3.2\pm0.2$           |
| HDL, mmol/L                                                                   | 1.3 $\pm$ 0.1         |
| Triglycerides, mmol/L                                                         | 1.0 (0.3 - 6.4)       |
|                                                                               | 1                     |
| Serum Testosterone, mmol/L (men, N= 25)                                       | 17.5 $\pm$ 2.2        |
| Serum Testosterone, mmol/L (men, N= 25)<br>Other hormonal deficiency          | $17.5\pm2.2$          |
|                                                                               | 17.5 ± 2.2<br>25 (61) |
| Other hormonal deficiency                                                     |                       |
| Other hormonal deficiency<br>- Gonadal axis                                   | 25 (61)               |

**Table 3**. Left heart dimensions (A), systolic function (B) and diastolic function (C) at follow-up compared to baseline of N= 41 patients. Results are expressed as mean  $\pm$  standard deviation. Measurements from echocardiography. Results generated by a mixed model analysis. \*P <0.05.

| A. Cardiac structure                                  | Baseline         | 3-5 years        | 8-10 years       |
|-------------------------------------------------------|------------------|------------------|------------------|
| Inter ventricular septum diameter (mm)                | 9.1 $\pm$ 2.1    | 9.2 $\pm$ 2.2    | $9.1\pm2.0$      |
| Left ventricular internal dimension end diastole (mm) | 45.7 $\pm$ 8.5   | 46.8 $\pm$ 7.8   | $45.6\pm8.8$     |
| Left ventricular internal diameter end systole (mm)   | 29.5 $\pm$ 5.0   | 30.9 $\pm$ 5.9   | $26.8\pm6.2$     |
| Left ventricular posterior wall dimension (mm)        | 8.9 $\pm$ 1.7    | 9.4 $\pm$ 1.8    | $9.0\pm1.6$      |
| Left ventricular mass (g)                             | 145.6 $\pm$ 51.1 | 151.4 $\pm$ 52.9 | 141.6 $\pm$ 48.5 |
| Left ventricular mass index (g/m2)                    | 74.1 $\pm$ 20.5  | 76.6 $\pm$ 21.3  | 72.7 $\pm$ 20.4  |
| B. Systolic function                                  |                  |                  |                  |
| Fractional shortening (%)                             | $37.1\pm8.9$     | 34.0 $\pm$ 9.0   | 40.3 $\pm$ 12.5  |
| C. Diastolic function                                 |                  |                  |                  |
| Mitral valve flow E/A ratio                           | 1.4 $\pm$ 0.6    | 1.3 $\pm$ 0.5    | 1.3 $\pm$ 0.5    |
| Mitral valve deceleration time (s)                    | 0.19 $\pm$ 0.07  | 0.19 $\pm$ 0.04  | 0.19 $\pm$ 0.05  |

**Table 2.** IGF-1 standard deviation scores at follow-up compared to baseline in different groups. All numbers are expressed as mean  $\pm$  standard error of the mean.



Results are generated from a mixed model analysis. \* P<0.05

| IGF-1 standard deviation scores | N Ba | seline            | 3-5 years                  | 8-10 years        |
|---------------------------------|------|-------------------|----------------------------|-------------------|
| All patients                    | 41   | - 0.9 $\pm$ 0.3   | $1.0^{*}\pm0.4$            | $0.5^{*}\pm0.3$   |
| Adulthood-onset total           | 23   | - 1.48 $\pm$ 0.29 | $ ho  ho  ho 1.0^*\pm 0.4$ | $0.3^{*} \pm 0.4$ |
| Childhood-onset total           | 18   | - 0.27 $\pm$ 0.43 | $0.9 \pm 0.6$              | $0.7* \pm 0.5$    |
| Men                             | 25   | - 0.9 $\pm$ 0.3   | $1.4^{*}\pm0.5$            | $0.9* \pm 0.3$    |
| Women                           | 16   | - 1.0 $\pm$ 0.5   | $0.4^{*}\pm0.5$            | - 0.0 $\pm$ 0.5   |
| Naive                           | 25   | -1.4 $\pm$ 0.3    | $1.0^{*}\pm0.4$            | $0.4*\pm0.4$      |
| Semi-naive                      | 16   | -0.3 $\pm$ 0.4    | $0.8\pm0.6$                | $0.6 \pm 0.5$     |

- No significant difference was observed in cardiac structure, nor in cardiac systolic or diastolic function during long term GH therapy.
- When dividing the patient cohort into subgroups a decrease in diastolic function was observed among naïve and adulthood-onset patients.
- A non-significant positive correlation was observed between change in IGF-1 SDS versus change in LVMI, at 3-5 years and 8-10 years follow-up.

#### Conclusions

Results from this study indicate that treatment duration of 8-10 years with GH replacement therapy in physiological doses in GH deficient patients appears not to be harmful, considering cardiac status. Verification of a positive effect of GH replacement on left ventricular mass index will, however, require a larger cohort of GHD patients.



Poster presented at:



