RESISTIN GENE POLYMORPHISM IN OFFSPRING OF PATIENTS WITH TYPE 2 DIABETES MELLITUS

Farid Fawzy⁽¹⁾, Osama Khalil⁽¹⁾, Hatem M. Salem⁽¹⁾, Mohamed S. Fawzy⁽²⁾

⁽¹⁾ Department of Internal Medicine, Faculty of Medicine, Zagazig University, Egypt. ⁽²⁾ Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Egypt.

OBJECTIVES

Background: Resistin is a hormone that potentially links obesity to T2DM. Several Single Nucleotide Polymorphisms (SNPs)

METHODS

Methods: This case control study included 60 volunteers divided into 2 groups:

Group A: Control group including 30 healthy individuals with negative family history of DM.

have been identified in the Resistin Gene (RETN). Polymorphism of RETN +299 (G>A) may contribute to increased resistin levels, which may be involved in the pathogenesis of T2DM¹.

Aim of work: To study the association between resistin gene +299 polymorphism and insulin resistance in non-diabetic offspring of T2DM.

Group B: Offspring of patients with T2DM including 30 non-diabetic individuals with positive family history of DM. The latter group was further classified after OGTT into: *Group B1*: 15 individuals with normal glucose tolerance. Group B2: 15 individuals with impaired glucose tolerance.

All individuals had an estimation of serum resistin level by ELISA and RETN+299 polymorphism by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) (Table 1).

Table (1): Comparison of the mean values ±SD of the demographic and chemical parameters among different subgroups of the study by Anova test.

Table (3): Comparison of the mean values ±SD of different biochemical
parameters in relation to the different genotypes in group B2 by Anova test

	Group A	Group B1	Group B2	F	P			CA	CC	F
					0.476		AA	UA	00	r
Age	35.967 ± 9.121	34.8±7.839	38.5±6.739	0.762	(NS)	Fasting blood		110.5±8.1	104.5±3.5	
Gender Male/ female	16/14	7/8	10/5	X ² =1.279	0.521 (NS)	glucose (mg/dl)	119.174±2.62	a	a,b	7.671
BMI (Kg / m²)	22.4±1.7	23.1±3.1	23.92±1.9	1.2	0.812 (NS)	2 h post prandial blood	175.143±4.95	160.67±4.32	145±2.01 a.b	40.746
Fasting blood glucose (mg/dl)	84.43±7.5	88.87±6.3	111.87±7.12 a,b	79.604	0.001 (HS)	glucose (mg/dl)	1/011/02/020	a		
2 h post prandial blood glucose	110.07±10.45	114.933±10.52	165.2±11.56 a,b	139.234	0.001 (HS)	Fasting insulin (µIu/ml)	14.13±2.11	11.22±1.113 a	7.1±0.77 a,b	15.193
(mg/01)		67+128	12 76+2 002		0.001	Some notistin (ng/m)	5 04410 72	4.15±0.523	2.5±1.09	10.820
(µIu/ml)	3.4±1.03	a	a,b	89.014	(HS)	Serum resistin (ng/mi)	5.044±0.75	а	a,o	10.829
Serum resistin (ng/ml)	1.315±0.18	1.37±0.2	4.46±0.843 a,b	274.2	0.001 (HS)	HOMAIR	4 18+0 61	3.06±1.19	1.8±0.262	10 540
HOMA-IR	0.7±0.217	1.458±0.28	3.54±1.16	108.372	0.001	HOMA-IK	4.10±0.01	а	a,0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Group A	Group B1	Group B2	F	r		AA	GA	GG	F	Р
Age	35.967±9.121	34.8±7.839	38.5±6.739	0.762	0.476 (NS)	Fasting blood		110.5±8.1	104.5±3.5		0.007
Gender Male/ female	16/14	16/14 7/8 10/5 $X^2 = 1.279$ 0.521 (m (NS))	glucose (mg/dl)	119.174±2.62	a	a,b	7.671	(HS)			
BMI (Kg / m²)	22.4±1.7	23.1±3.1	23.92±1.9	1.2	0.812 (NS)	2 h post prandial blood	175.143±4.95	160.67±4.32	145±2.01 a.b	40.746	0.001
Fasting blood glucose (mg/dl)	84.43±7.5	88.87±6.3	111.87±7.12 a,b	79.604	0.001 (HS)	glucose (mg/dl)		a	000 4000		(HS)
2 h post prandial blood glucose (mg/dl)	110.07±10.45	114.933±10.52	165.2±11.56 a,b	139.234	0.001 (HS)	Fasting insulin (µIu/ml)	14.13±2.11	11.22±1.113 a	7.1±0.77 a,b	15.193	0.001 (HS)
Fasting insulin (µIu/ml)	3.4±1.03	6.7±1.38 a	12.76±3.993 a,b	89.014	0.001 (HS)	Serum resistin (ng/ml)	5.044±0.73	4.15±0.523 a	2.5±1.09 a,b	10.829	0.002 (HS)
Serum resistin (ng/ml)	1.315±0.18	1.37±0.2	4.46±0.843 a,b	274.2	0.001 (HS)	нома в	4 19 0 61	3.06±1.19	1.8±0.262	10.540	0.02
HOMA-IR	0.7±0.217	1.458±0.28	3.54±1.16	108.372	0.001	HOMA-IK	4.18±0.61	а	a,b	19.549	(HS)

Results: We found a statistically significant increase of serum resistin (AA genotype and combined GA+AA genotypes), decrease in GG genotype, increase of A allele (P<0.03) and increase in the indices of insulin resistance in the impaired glucose tolerant offspring as compared to the control individuals as well as normal glucose tolerant offspring (Table 2).

HS=Highly Statistical Significance. NS=None Statistical Significance a=Significant as compared with control. b=Significant as compared with normal glucose tolerance. HS=Highly Statistical Significance. a=Significant as compared with AA. b=Significant as compared with GA

Table (2): Comparison of the frequency and percentage of different genotypes and alleles in different subgroups of the study by X² test.

	Group A		Group B1		G	roup B2	v ?	р
	Ν	%	N	%	N	ſ	% A-	Р
AA	3	10%	4	26.667%	7	46.667%	5	
GA	12	40%	9	60%	6	40%	10.24	0.037 (S)
GG	15	50%	2	13.333%	2	13.333%	5	
AA+GA	15	50%	13	86.7%	13	86.7%	7.02	0.018
GG	15	50%	2	13.3%	2	13.3%	7.93	(S)
А	18	30%	17	56.7%	20	66.7%	66.7%	
G	42	70%	13	43.3%	10	33.3%	8.221	(S)
		_						-

Table (4): Correlation coefficient between serum resistin level (ng/ml) versus different biochemical parameters of the study in group B2.

	Fasting blood glucose (mg/dl)		2 h post pr blood glu (mg/d	Fasting (µIu	insulin /ml)	HOMA-IR		
	r	Р	r	P	r	Р	r	Р
Serum resistin	0.606	0.01 (S)	0.683	0.03 (S)	0.719	0.03 (S)	0.737	0.02 (S)

S=Statistical Significance.

There was also a statistically significant association between hyperglycemia and resistin gene polymorphism at positions +299 (G>A) (Table 3).

Moreover, a significant positive correlation was found between serum resistin level and insulin resistance in impaired glucose tolerant offspring (Table 4).

S=Statistical Significance.

CONCLUSIONS

References

Conclusions: The present study support that RETN+299 G>A SNP and increase in serum resistin may have contributed to increased insulin resistance with subsequent susceptibility to T2DM in offspring of type 2 diabetic patients. Those carrying AA and combined GA+AA genotypes are more at risk.

¹ Khalil O, Alnahal A, Ghonium M. et al., (2014): Does Resistin Gene Polymorphisms +299 (G>A) Participate in Insulin Resistance in Egyptian non-Obese Type 2 Diabetes? Int J *Genomic Med* ; 2: 117-123.

