High dose vitamin D treatment regulates the gene expression

pattern in T helper cells of type 1 diabetes patients

M. Penna-Martinez¹, H. Hess¹, C. Döring², N. Nejatian¹, D. Bogdanou¹, F. Shoghi¹, M-L. Hansmann² and K. Badenhoop¹ ¹Department of Internal Medicine, Division of Endocrinology, ²Senckenberg Institute of Pathology, University Hospital Frankfurt am Main, Germany

Introduction / Objectives

Dysregulated T helper cells and vitamin D (VD) deficiency are important factors in the pathogenesis of Type 1 diabetes mellitus (T1D)⁽¹⁾⁽²⁾⁽³⁾. Therefore, we investigated the immune effects of high dose VD treatment on gene expression pattern (GEP) in T helper cells (Th) before and after VD-therapy in patients with T1D.

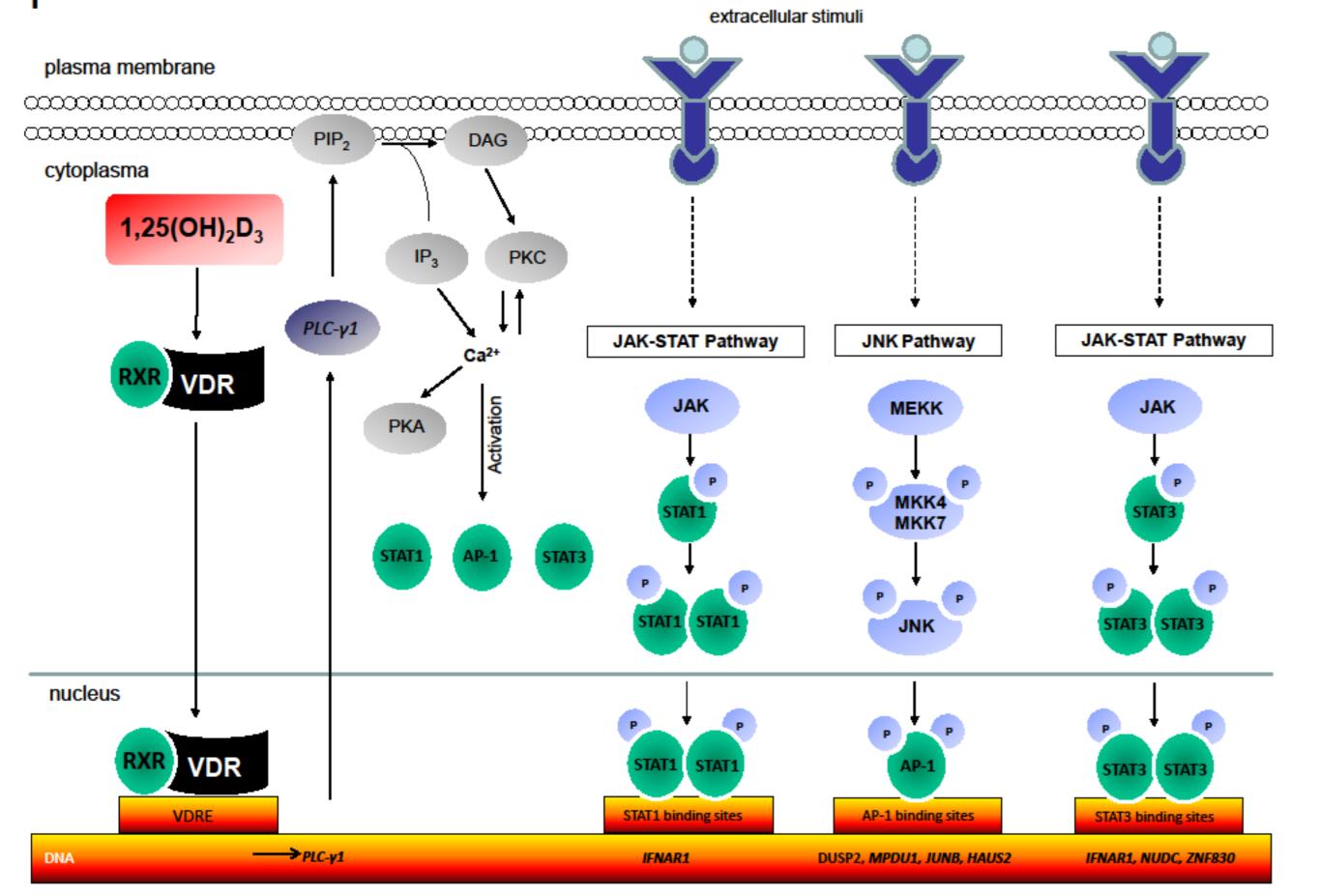


Figure 1: Vitamin D-mediated gene transcription in T helper cells. 1,25(OH)₂D₃ binds to vitamin D receptor (VDR), which dimerizes with the retinoid X receptor (RXR). The VDR-RXR complex is translocated into the nucleus where it binds to vitamin D response element (VDRE) in VD responsive genes. For example, it induced upregulation of PLC-y1 gene expression. Phospholipase C-gamma 1 (PLC-γ1) activates cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC) which increase the intracellular calcium level (4). This could lead to an activation of AP-1, STAT1 and STAT3 necessary transcription factors for variety of genes e.g. dual specificity phosphatase 2 (DUSP2), mannose-P-dolichol utilization defect 1 (MPDU1), jun B proto-oncogene (JUNB), HAUS augmin-like complex, subunit 2 (HAUS2), interferon receptor 1 (IFNAR1), nuclear distribution protein (NUDC) and zinc finger protein 830 (ZNF830). Furthermore extracellular stimuli via T cell receptor (TCR) induce an intracellular-signal pathway through kinase-phosphorylation which also activates these transcription factors. 1,25(OH)₂D₃ could modulate these pathways via increase the calcium concentration (5)(6)(7).

Patients and Methods

Seven T1D patients with 25(OH)D₃ levels below 20 ng/ml received three months 4000 IU/d Vigantol oil as part of the RCT VIDDA1. The 25(OH)D₃ concentration and gene expression within Th cells were measured at baseline (V1) and after three months treatment (V3). T helper cells were isolated from freshly collected EDTA-blood by density gradient centrifugation, subsequently enriched by magnetic sorting and total RNA was isolated. After cDNA synthesis the gene expression profile investigated using GeneChip Human 1.0 (Affymetrix). 25(OH)D₃ plasma concentrations were measured by radioimmunoassay. VD-therapy effects on the gene expression were evaluated using the differences between V1 and V3 (expressed in fold changes=FC) within each patient by the statistical computing environment R version 3.0.2 [R Development Core Team, 2005].

This study was supported by the German Diabetes Society and a grant from the European Union (FP7-NAIMIT; Grant Agreement No. 241447)

Results

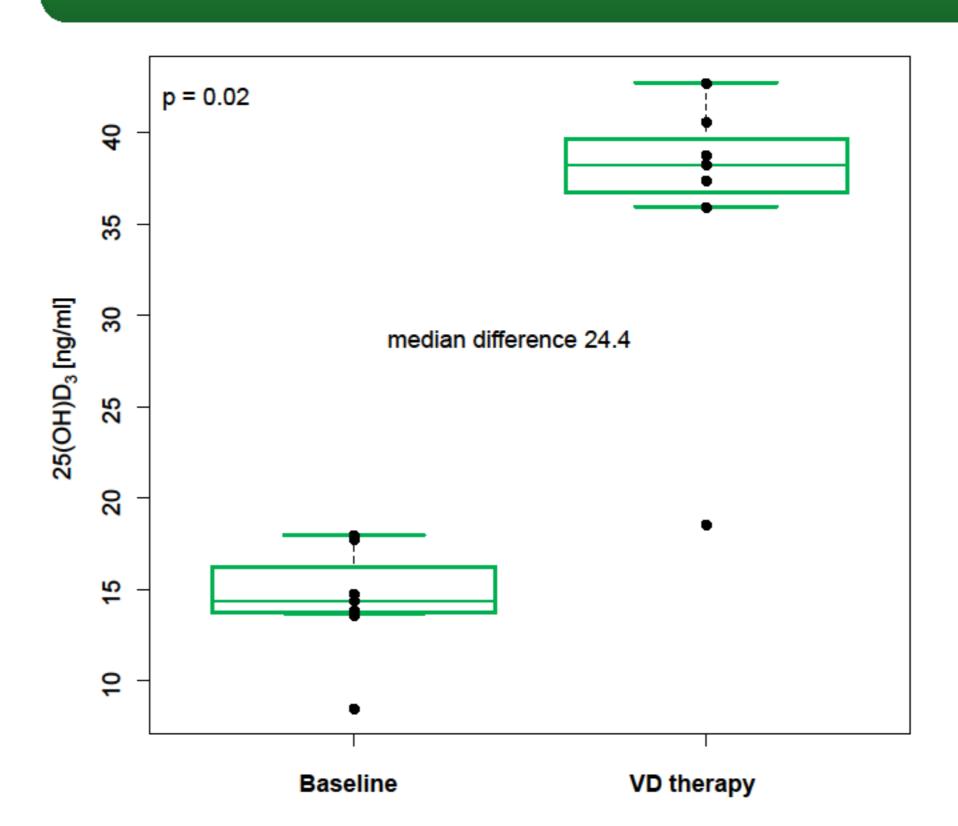


Figure 2: 25(OH)D₃ level after VD therapy.

The 25(OH)D₃ concentration increased in median from 14 to 38 ng/ml (median differences 24.4 ng/ml;p = 0.02) after high dose VD.

Table 1: Validation of GEP using real time RT-PCR. The data are expressed as median (interquartile range = IQR). The microarray results were checked in seven randomly selected genes using real time PCR: The upregulation of the genes JUNB (p < 0.05) and DUSP2 $(p_{\text{trend}} = 0.08)$ was confirmed in T1D patients.

	T1D Gene expression 2-[CT target - CT 18s RNA] x 10 ⁶	
	differences V3-V1,	V1 vs V3
	median (IQR)	p values
HAUS2	0.2 (-0.4 — 1.4)	>0.9
MPDU1	0.9 (-3.0 — 5.3)	>0.8
JUNB	978.1 (122.8 — 1475.8)	<0.05
DUSP2	203.5 (-11.1 — 349.7)	0.08
IFNAR1	2.9 (-7.9 — 8.9)	>0.9
NUDC	95.3 (-58.2 — 37.1)	>0.8
ZNF830	-8.4 (-12.8 — 14.6)	>0.9

Conclusions

The elevation of 25(OH)D₃ induced by Vigantol therapy (4000 IU/day) leads to differential gene expression pattern in Th cells from T1D patients (four genes upregulated/forty-four genes regulated). The Th cell response to vitamin D results in an upregulated gene set (DUSP2, HAUS2, JUNB, MPDU1) and a downregulated gene set (IFNAR1, NUDC and ZNF830). Our data as validated by RT-PCR suggest an indirect VD effect particularly on the upregulated gene set (DUSP2 and JUNB) probably via activation of transcription factor such as activator protein 1 (AP-1). These data can help to explain how vitamin D treatment can tip a balance from a pro- to an antiinflammatory cellular environment.

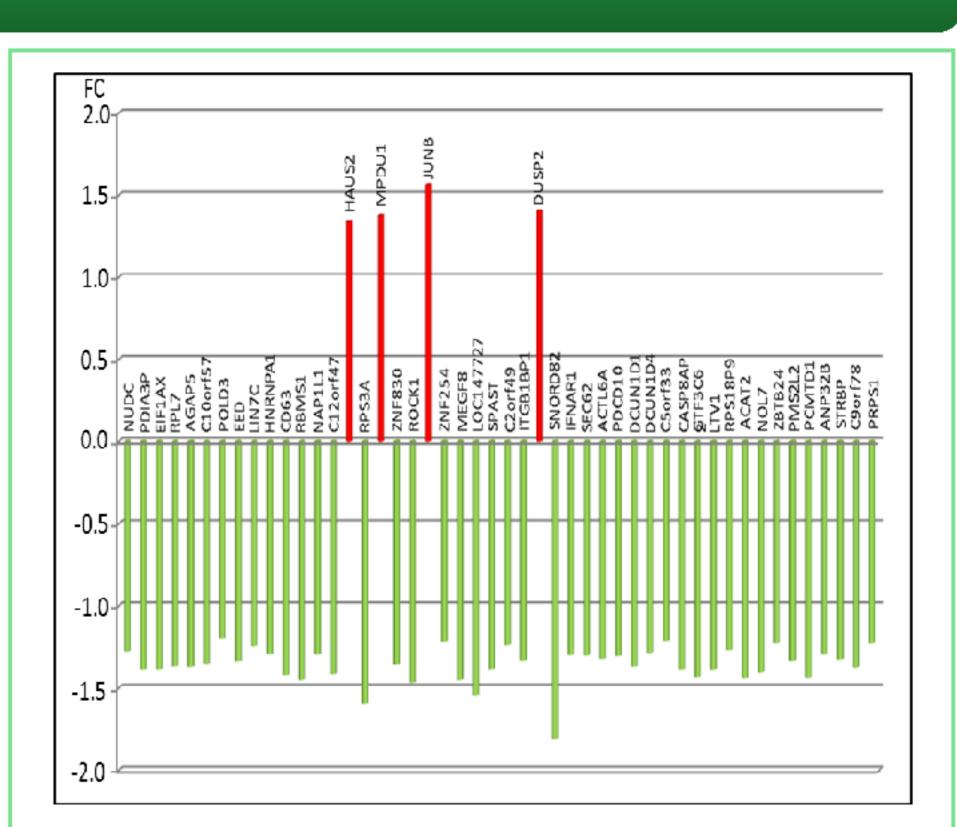


Figure 3: GEP in T1D under VD therapy.

The FC of each gene is shown. Forty-eight annotated genes changed significantly in Th cells from with T1D after patients treatment. Important to note, only four genes were upregulated (red columns) whereas forty-four genes regulated down (green were columns).

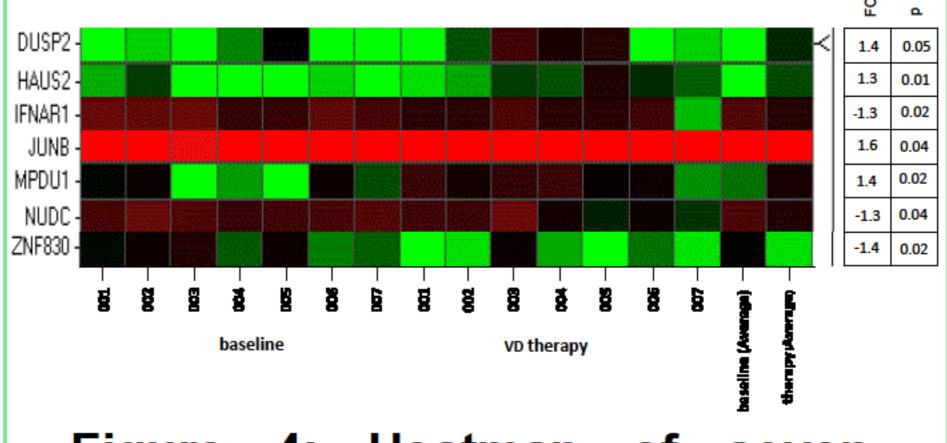
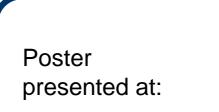


Figure 4: Heatmap of seven selected genes.


Four genes; DUSP2 (FC: 1.4;p = 0.05), HAUS2 (FC: 1.3; p = 0.01), JUNB (FC: 1.6; p = 0.04) and MPDU1 (FC: 1.4;p = 0.02) showed a higher expression after VD treatment in T1D patients. In contrast genes which code for IFNAR1 (FC: -1.3;p = 0.02), NUDC (FC: -1.3;p = 0.04)) and ZNF830(FC: -1.4; p = 0.02) showed a lower expression.

References

- (1) Walker LS and von Herrath M. Clin Exp Immunol (2016) 183:16-29.
- (2) Cooper JD et al. Diabetes (2010) 60:1624-1631.
- (3) Mathieu C. Diabetes Res Clin Pract (2015) 108:201-209.
- (4) Kongsbak M *et al.* Frontiers in immunology (2013) 4:148.
- (5) Liu Y et al. Nat Rev Immunol (2007) 7:202-212.
- (6) Atkinson MA. et al. Diabetes (2011) 60:1370-1379.
- (7) Egwuagu CE et al. Cytokine (2009) 47:149-156.

Diabetes 3 Marissa Penna-Martinez

