Navigating troubled waters: Hyperglycaemic Hyperosmolar State precipitated by Nephrogenic Diabetes Insipidus P Avari¹, A Sharma¹, S Samarasinghe¹, Q Barnor¹ Department of Endocrinology, Watford General Hospital, West Hertfordshire Hospitals NHS Trust

INTRODUCTION

- **O** Hyperglycaemic hyperosmolar state (HHS) is a common medical presentation, typically occurring in older patients with Type 2 diabetes mellitus.
- **O** Mortality rates of up to 60% have been reported.
- **O** We describe a rare case of HHS, likely to be precipitated post lithium-induced nephrogenic diabetes insipidus (DI).

CASE HISTORY

- A 62-year-old female with bipolar disorder presented to ED with lethargy, confusion and reduced mobility.
- Past medical history: bipolar disorder, hypothyroidism and recurrent UTIs.
- Medication history: lithium (>10 years duration), diazepam, olanzapine, sodium valproate and levothyroxine.
- She remained persistently hypernatraemic with Na >170mmol/L despite commencement of intravenous fluids.
- 10 days after admission, her blood glucose was noted to be 35mmol/L with serum osmolality of 398mOsm/kg
- She was deemed to be in **HHS** and treatment commenced with fixed rate insulin infusion and 0.9% saline.
- Over the next few days, the patient's clinical state deteriorated and she was transferred to ITU.

RESULTS

	Pre-HHS treatment	Post-HHS treatment	Post-DI treatment
Glucose (mmol/L)	35	7	-
Serum Osmolality (mOsmol/kg)	398	350	289
Urine Osmolality (mOsmol/kg)	-	219	267
Serum Na (mmol/L)	176	150	144

MANAGEMENT

- Amiloride with hydrochlorothiazide was started as treatment for nephrogenic DI.
- Subsequent improvement was observed with falling serum osmolalities and plasma sodium.
- Despite a fall in blood glucose, her plasma Na remained persistently elevated despite intravenous 0.45% saline.
- She remained polyuric with an increasing plasma osmolality and a low urine osmolality. This prompted the consideration of **<u>nephrogenic DI</u>** as a concomitant pathology.
- Overnight water deprivation test confirmed the diagnosis of DI

INITIAL INVESTIGATIONS

Bloods:

Her plasma glucose remained stable on oral antihyperglycaemic agents.

Discussion & Learning Points

- Nephrotoxic renal effects of lithium may occur even within what is considered a therapeutic range.
- Lithium acts through entering the collecting ducts through epithelial sodium channels (ENaC) and inhibits signalling pathways (adenylate cyclase and glycogen synthase3-beta) causing disruption of the aquaporin-2 structure. These changes are initially reversible but thereafter can become permanent.
- Following recovery of hyperglycaemia, persistent polyuria and hyperosmolar state, should prompt consideration of differentials to include diabetes insipidus.
- Amiloride and hydrochlorthiazide are

Hb 109g/dL, WCC 12 x 10⁹/l , Neu 9.0 x 10⁹/l Na 143mmol/L, K 4.0mmol/L, Urea 7mmol/L, Cr 98mmol/L TFTs- normal Lithium levels 1mmol/L (0.4-0.8 mmol/L)

HbA1c (IFCC): 36mmol/mol (5.4% six months preadmission)

<u>Venous blood gas</u>: pH 7.43, bicarbonate 25.9mmol/L

ECG: normal sinus rhythm CXR/Urine dip: negative

effective in the treatment of nephrogenic diabetes insipidus.

It is important to recognise the two conditions may coexist in the same patient, so that appropriate therapies may be initiated.

References:

Azam et al. Hyperosmolar Nonketotic coma precipitated by lithium induced nephrogenic diabetes insipidus. (1998) Postgrad Med J 74(867): 39-41

