

NHS Trust

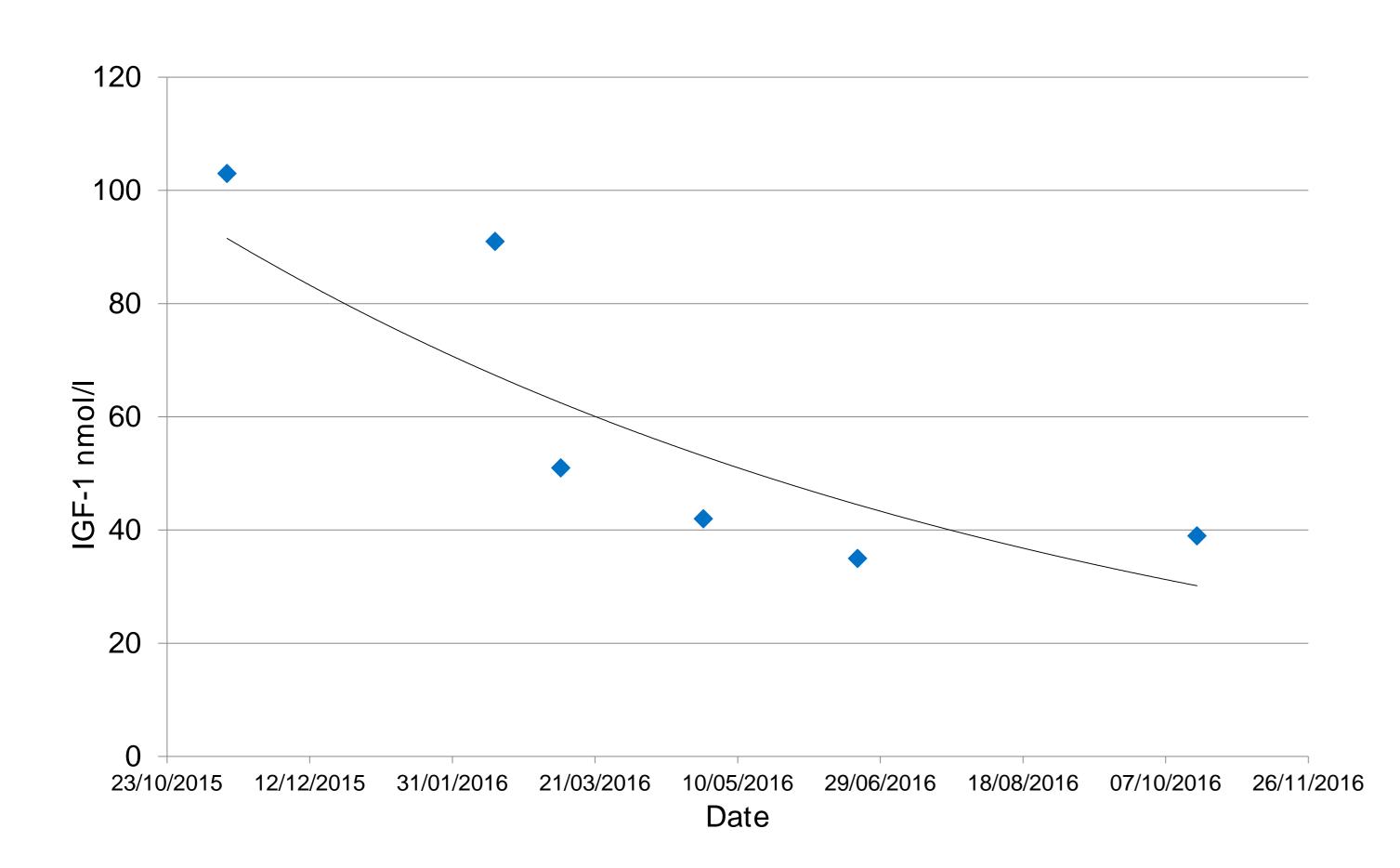
Simon Edeghere¹, Duncan Browne², Brendan McLean³.

1. Specialist Registrar, Endocrinology and Diabetes. 2. Consultant Endocrinologist. 3. Consultant Neurologist

INTRODUCTION

Morvan's syndrome is a rare autoimmune disease characterised by peripheral nerve hyper excitability, central nervous system symptoms and autonomic dysfunction which can manifest as hyperhidrosis, weight loss, neuromyotonia and insomnia¹. It can mimic endocrinopathies and is associated with malignancy, in particular thymomas, suggesting paraneoplastic aetiology².

This case is the first to associate Morvan's with renal cell carcinoma and proposes insulin like growth factor 1 (IGF-1) as a marker of disease activity.


CASE REPORT

A 52 year old man presented to his general practitioner with nonspecific symptoms including weight loss, diarrhoea, hyperhidrosis and paraesthesia. He had a past medical history of hypertension for which he took lisinopril but otherwise was previously fit and well.

Subsequently, he was extensively investigated and a Computed tomography (CT) scan revealed a 5.4 X 5.1cm left renal mass which was confirmed to be renal cell carcinoma following a curative nephrectomy. His symptoms persisted three months post-surgery and a phaeochromocytoma, carcinoid tumor, thyrotoxicosis and Cushing's syndrome were all excluded after referral to the endocrine outpatient clinic.

Furthermore, he had a normal positron emission tomography (PET) scan that ruled out metastatic spread or a secondary malignancy. Interestingly, his IGF-1 was found to be elevated at 103nmol/L (normal range 8-39nmol/L) which persisted on subsequent testing (although he had a normal oral glucose tolerance test excluding acromegaly). Voltage gated potassium channel (VGKC) antibodies (diagnostic of Morvan's) were positive at 843pM (normal <100pM) confirming the diagnosis. He received an immunoglobulin infusion and high dose prednisolone with significant improvement of his symptoms and stepwise reduction in his IGF-1 (Figure).

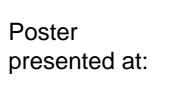
He is presently under joint neurology and endocrinology follow up, doing well on low dose prednisolone.

DISCUSSION

There are very few documented cases of Morvan's and the natural history varies from spontaneous remission to chronic presentations^{1,3}. The pathogenesis is not fully understood but is believed to be paraneoplastic, hence the resolution of symptoms following thymectomy in some patients with associated thymomas^{2,4}. VGKC antibodies also play a role and the treatment options include plasmapheresis, immunoglobulins, steroids and symptomatic relief with anxiolytics^{5, 6}.

IGF-1 is synthesized primarily in the liver under the influence of growth hormone (GH), which also regulates its secretion into the systemic circulation⁷. It is a small peptide that is about 99% protein bound and exerts its effects via activation of IGF-1 receptors found on multiple target tissues⁸. It is uncertain what connection Morvan's has with IGF-1 but based on our investigations it is unlikely to cause acromegaly which results from persistent hypersecretion of GH.

A possible hypothesis is that Morvan's might result in increased secretion of IGF-1 into the peripheral circulation as some mesenchymal cells play a role in IGF-1 secretion. This is the first documented case of Morvan's associated with renal cell carcinoma and we propose IGF-1 as a marker of disease as the patient's levels progressively improved with treatment and resolution of symptoms.


CONCLUSION

Standard clinical practice should not necessarily be changed based on these findings, but further research into the role of IGF-1 in Morvan's syndrome should be considered. We are presently looking into analysing IGF-1 levels in established cases of Morvan's to determine any correlation with disease progression.

REFERENCES

- 1. Abou-Zeid E, Boursoulian L. J, Metzer W. S, Gundogdu B. Morvan Syndrome: a case report and review of literature. Journal of Clinical Neuromuscular Disease. 2012;13(4): 214-227.
- 2. Irani S. R., Pettingill P., Kleopa K. A., et al. Morvan syndrome: clinical and serological observations in 29 cases. *Annals of Neurology*. 2012;72(2):241– 255. doi: 10.1002/ana.23577.
- 3. Rinaldi C, Russo C. V, Filla A et al. Course and outcome of a Voltage-gated potassium channel negative Morvan's syndrome. Neurol Sci 2009;30:237-239.
- 4. Lee E. K, Maselli R. A, Ellis W. G, et al. Morvan's fibrillary chorea: a paraneoplastic manifestation of thymoma. J Neurosurg Psychiatry. 1998:65:857-862.
- 5. Newsom-Davis J, Buckley C, Clover L, et al Autoimmune disorders of neuronal potassium channels. *Ann NY Acad Sci* 2003;998:202–210.
- 6. Goldberg R. J, Sound-alike syndromes: first report of Morvan's and not Marfan's syndrome. J Am Geriatr Soc. 2008;56:774–776.
- 7. Veldhuis J. D, Iranmanesh A. Physiological regulation of the human growth hormone (GH) - Insulin-like growth factor type I(IGF-I) axis: predominant impact of age, obesity, gonadal function and sleep. Sleep. 1996 Dec;19(10) Suppl):S221-4.
- 8. Werner H, Weinstein D, Bentov I. Similarities and differences between insulin and IGF-1 structures, receptors and signal pathways. Arch Physiol Bichem. 2008; 114:17

DOI: 10.3252/pso.eu.BES2016.2016