# Maternal hypercalcaemia due to CYP24A1 loss of function mutations

# Thomas Upton<sup>1</sup>, Penny Hunt<sup>1</sup>, Ian Phillips<sup>2</sup>, Chris Florkowski<sup>2</sup>, Martin Kaufmann<sup>3</sup>

<sup>1</sup>Department of Endocrinology, Christchurch Hospital, New Zealand; <sup>2</sup>Canterbury Health Laboratories, Christchurch, New Zealand, <sup>3</sup>Department of Biomedical and Molecular Sciences, Queen's University, Ontario, Canada

### Introduction

- Changes in calcium homeostasis occur during normal pregnancy to meet the needs of the growing fetus
- These include marked rise in 1,25-dihydroxyvitamin D (1,25-(OH)D<sub>3</sub>) and suppression of parathyroid hormone (PTH)
- However, maternal hypercalcaemia is very uncommon and should prompt further investigation

## Case history

- A 24-year-old primigravida was diagnosed with hypercalcaemia from 6/40 gestation
- The pregnancy was otherwise uncomplicated and she delivered a healthy male infant at 38/40
- Hypercalcaemia resolved within 4 weeks postpartum, although hypercalciuria persisted





#### A model of vitamin D metabolism

- I,25-(OH)<sub>2</sub>D<sub>3</sub> (calcitriol) is metabolised by CYP24A1 encoded 24-hydroxylase to the inactive calcitroic acid  $(24,25-(OH)_2D_3)$
- Mutations in CYP24A1 impair 24-hydroxylase activity resulting

was identified during genetic screening

in reduced vitamin D metabolism, rises in  $1,25-(OH)_2D_3$ , and increased susceptibility to hypercalcaemia Figure reproduced from Schlingmann et al. NEJM 2011

|              | <b>Calcium</b><br>(2.2-2.6 mmol/L) | <b>PTH</b><br>(1.6-7.0 pmol/L) | <b>Urine Ca:Cr ratio</b><br>(0.06-0.45) | <b>25-OH-D</b> <sub>3</sub><br>(50-150 nmol/L) | I,25-(OH) <sub>2</sub> D <sub>3</sub><br>(65-175 pmol/L) | 24,25-(OH) <sub>2</sub> D <sub>3</sub><br>(nmol/L) | 25-OH-D <sub>3</sub> :24,25-<br>(OH) <sub>2</sub> D <sub>3</sub><br>ratio |
|--------------|------------------------------------|--------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|
| Index (II-3) |                                    |                                |                                         |                                                |                                                          |                                                    |                                                                           |
| 13/40        | 2.9                                | 0.7                            | 2.09                                    | 116                                            | 380                                                      |                                                    |                                                                           |
| Post-partum  | 2.5                                | I.8                            | 0.76                                    | 65                                             | 149                                                      | 0.6                                                | 107                                                                       |
| I-I          | 2.4                                | 3.0                            | 0.37                                    | 82                                             |                                                          | 5.0                                                | 16                                                                        |
| I-2          | 2.5                                | 3.4                            | 0.26                                    | 52                                             |                                                          | 2.7                                                | 19                                                                        |
| -            | 2.7                                | 0.9                            | I.23                                    | 88                                             | ULN                                                      | 0.6                                                | 157                                                                       |
| II-2         | 2.4                                | 3.9                            | 0.14                                    | 46                                             |                                                          | I.9                                                | 24                                                                        |

#### Learning points

- The differential diagnosis of hypercalcaemia in pregnancy should include disordered 1,25-(OH)D<sub>2</sub> metabolism caused by mutations in CYP24A1
- Other clinical manifestations include hypercalciuria, which may persist even when calcium is within the normal range
- Ratio of 25-OH-D<sub>3</sub>:24,25-(OH)<sub>2</sub>D<sub>3</sub> is significantly elevated in affected cases, predicting mutation status
- Vitamin D metabolite analysis is therefore a useful adjunct to genetic testing in suspected cases

## References

Schlingmann et al. (2011). Mutations in CYP24A1 and idiopathic infantile hypercalcemia. New Engl. J. Med. http://doi.org/10.1056/NEJMoa1103864 Kaufmann et al. (2014). Clinical utility of simultaneous quantitation of 25hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J. Clin. Endocrinol. Metab. 99(7), 2567–2574. http://doi.org/10.1210/jc.2013-4388



