

# Pre-eclampsia as a rare cause of severe hyponatraemia

### Khyatisha Seejore<sup>1</sup>, Amal S. Mighell<sup>2</sup>, Alison J. Dawson<sup>1</sup>

<sup>1</sup>Department of Diabetes and Endocrinology, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK <sup>2</sup>Maternity Services, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK

#### Introduction

Hyponatraemia is a common electrolyte abnormality with multifactorial aetiology. It is associated with significant complications and carries a

Isotonic sodium chloride was carefully administered. She was delivered by caesarean section at 36+1 weeks because of persistent hyponatraemia and worsening symptoms of pre-eclampsia as well as suspected acute fatty liver

mortality rate of above 50% when plasma sodium concentration falls below 115 mmol/L.

Pre-eclampsia toxaemia (PET) is a multisystem disorder that affects 2% to 5% of pregnancies and is responsible for up to 18% of maternal mortality.<sup>1</sup> Classically, it is defined as hypertension and proteinuria ( $\geq 0.3g$  over 24 hours), with onset after 20 weeks gestation. It may also lower the threshold for seizures and predispose to foetal damage.

Severe hyponatraemia is a very rare, fatal complication of PET and has been described in only a few patients in the literature to-date. Here, we present a case of severe hyponatraemia complicating PET in a primiparous woman which resolved promptly postpartum.

#### Case Report

BES2017 BES2017

Clinical biochemistry

Khyatisha Seejore

A 23-year old healthy primigravida was admitted at 34+6 weeks' gestation following an episode of reduced foetal movements. She was hypertensive (BP 171/98 mmHg) and had 2+ proteinuria. Her sodium level was 133 mmol/L (NR: 135-145mmol/L) and urine protein-creatinine ratio was 229 mg/mmol (NR: 0-15). Cardiotocography was unremarkable. She was diagnosed with pre-eclampsia and started on labetalol and aspirin. She was discharged two days later with adequate BP control. She was recruited into the PHOENIX trial, a multi-centre trial comparing outcomes between early induction (34–36+6weeks) versus expectant management (delivery: 37 weeks) in pre-eclampsia. She was randomised to the early induction arm and received IM betamethasone at 35+4 weeks' gestation. Serum sodium dropped to 126 mmol/L and two days later, reached a nadir of 114 mmol/L at 35+6/40. She had now developed marked oedema and was admitted for further investigations, as outlined in Table 1.

#### (ALT 1348 iu/L; NR <40 iu/L).

A male infant was born (Apgar score 9 at 10 minutes) – he had mild hyponatraemia – corrected by the paediatricians. Within 24 hours of delivery, maternal hyponatraemia had improved to 133 mmol/L. This is illustrated in Figure 1.

Recovery was complicated by intrapartum sepsis. She was discharged eight days later with a normal BP.

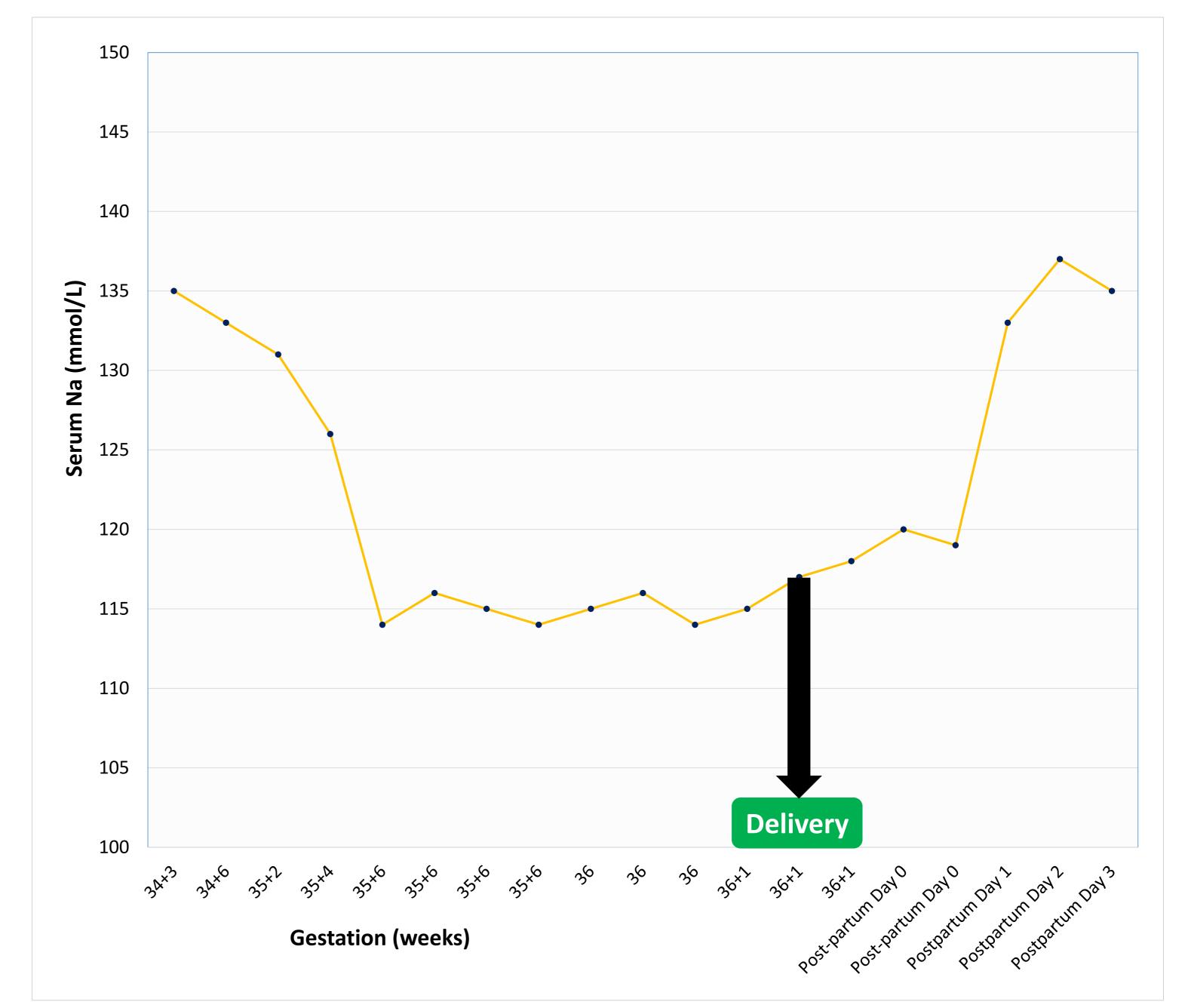



Table 1: Summary of investigations as at 35+6 weeks gestation

| Test                          | Value                             | <b>Reference Range</b>      |
|-------------------------------|-----------------------------------|-----------------------------|
| Urea and Electrolytes         |                                   |                             |
| Sodium                        | 114* mmol/L                       | 135-145 mmol/L              |
| Potassium                     | 3.8 mmol/L                        | 3.5-5.0 mmol/L              |
| Urea                          | 8.3* mmol/L                       | 2.5-7.8 mmol/L              |
| Creatinine                    | 62 umol/L                         | 49-90 umol/L                |
| Liver Function Tests          |                                   |                             |
| ALT                           | 721* iu/L                         | <40 iu/L                    |
| Bilirubin                     | 21 umol/L                         | 2-21 umol/L                 |
| Alkaline Phosphatase          | 171* iu/L                         | 30-130 iu/L                 |
| Albumin                       | 21* g/L                           | 35-50 g/L                   |
| <b>Thyroid Function Tests</b> |                                   |                             |
| Free T4                       | 11.9 pmol/L                       | 10-20 pmol/L                |
| TSH                           | 1.6 miu/L                         | 0.2-4.0 miu/L               |
| Full Blood Count              |                                   |                             |
| Haemoglobin                   | 122 g/L                           | 115-160 g/L                 |
| White Blood Cells             | 12.0 x 10 <sup>9</sup> /L         | 4-11 x 10 <sup>9</sup> /L   |
| Platelets                     | 248 x 10 <sup>9</sup> /L          | 150-400 x10 <sup>9</sup> /L |
| Random cortisol               | 75 nmol/L (post IM betamethasone) | 150-600 nmol/L              |
| Urine                         |                                   |                             |
| Urine osmolality              | 445 mosm/kg                       |                             |
| Urine sodium                  | < 10 mmol/L                       |                             |
| Serum osmolality              | 255* mosm/kg                      | 275-295 mOsm/kg             |

Figure 1: Variation in serum sodium level (NR: 135-145 mmol/L) during admission and postpartum. There is a net improvement in serum sodium level after delivery at 36+1 weeks gestation.

## Discussion

Pregnancy involves physiological changes affecting water/ sodium homeostasis. However, most women with PET do not develop hyponatraemia. A recent review of 332 pregnancies complicated by PET found hyponatraemia to occur more frequently in older age and twin gestations;<sup>2</sup> both features were absent in our patient. However, she had features of severe pre-eclampsia, including uncontrolled hypertension and impaired hepatic function.

We postulate that this was a case of hyponatraemia with hypervolaemia (excess extracellular sodium and total body water) as a result of impaired free water clearance secondary to pre-eclampsia. SIADH was discounted because of low urinary sodium and oedema.

We draw attention to severe hyponatraemia as a biomarker of severe preeclampsia and as a rare indication for urgent delivery. This requires multidisciplinary management and continuing postpartum care to ensure favourable maternal/ neonatal outcomes.

#### **References:**

- 1. Anglim B, Levins K, Bussmann N, et al (2016) Severe hyponatraemia associated with pre-eclampsia. BMJ Case Rep Published online: 10 August 2016 doi:10.1136/bcr-2016- 215036
- Razavi A.S., Chasen S.T., Gyawali R. et al. (2017) Hyponatraemia associated with pre-eclampsia. J. Perinat. Med., 45(4): 467-470

