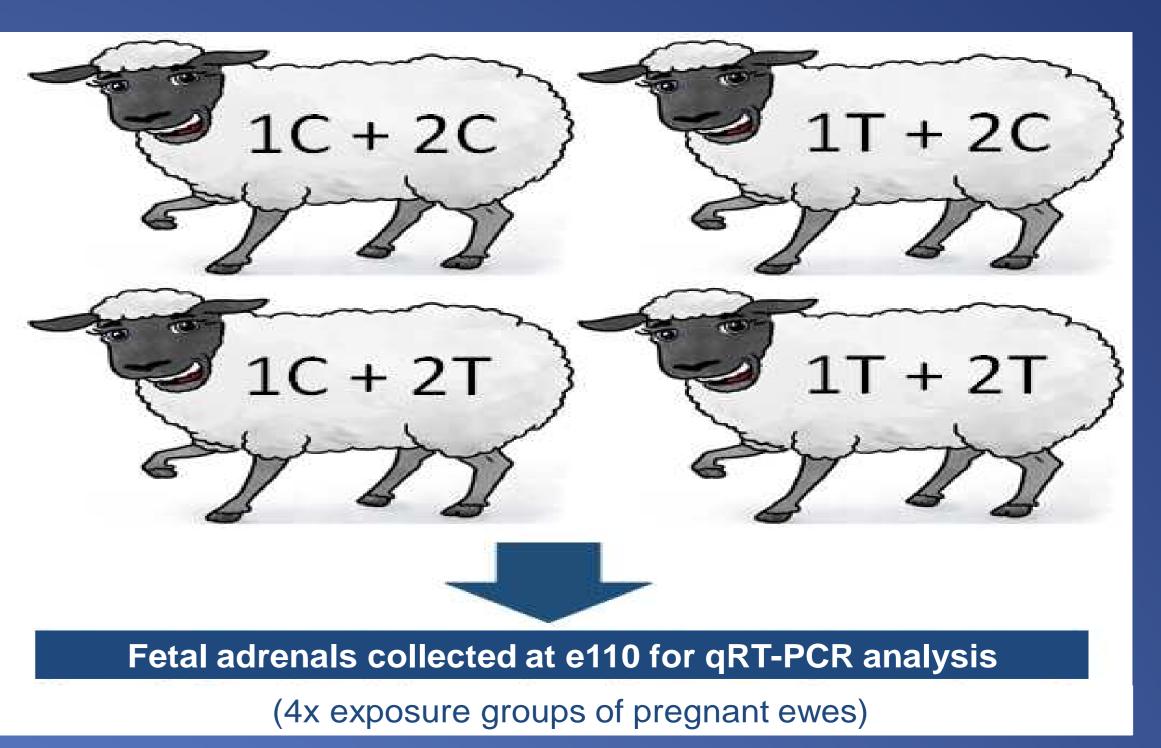
QRT-PCR analysis of the effect of *in utero* **exposure to sewage sludge on steroidogenic gene expression in the ovine fetal adrenal gland**

Erin A.M. Cooper¹, Sreedath Reddy², Abbie Z. Allenson¹, Duncan P. Cooper¹, Paul A. Fowler³, Michael T. Rae² & Steven D. Morley^{1,4} ¹University of Edinburgh Medical School, UK; ²School of Life, Sport & Social Sciences, Edinburgh Napier University, UK; ³Institute of Medical Sciences, University of Aberdeen, UK; ⁴Division of Health Sciences, University of Edinburgh, UK.


Why are endocrine disruptors important?

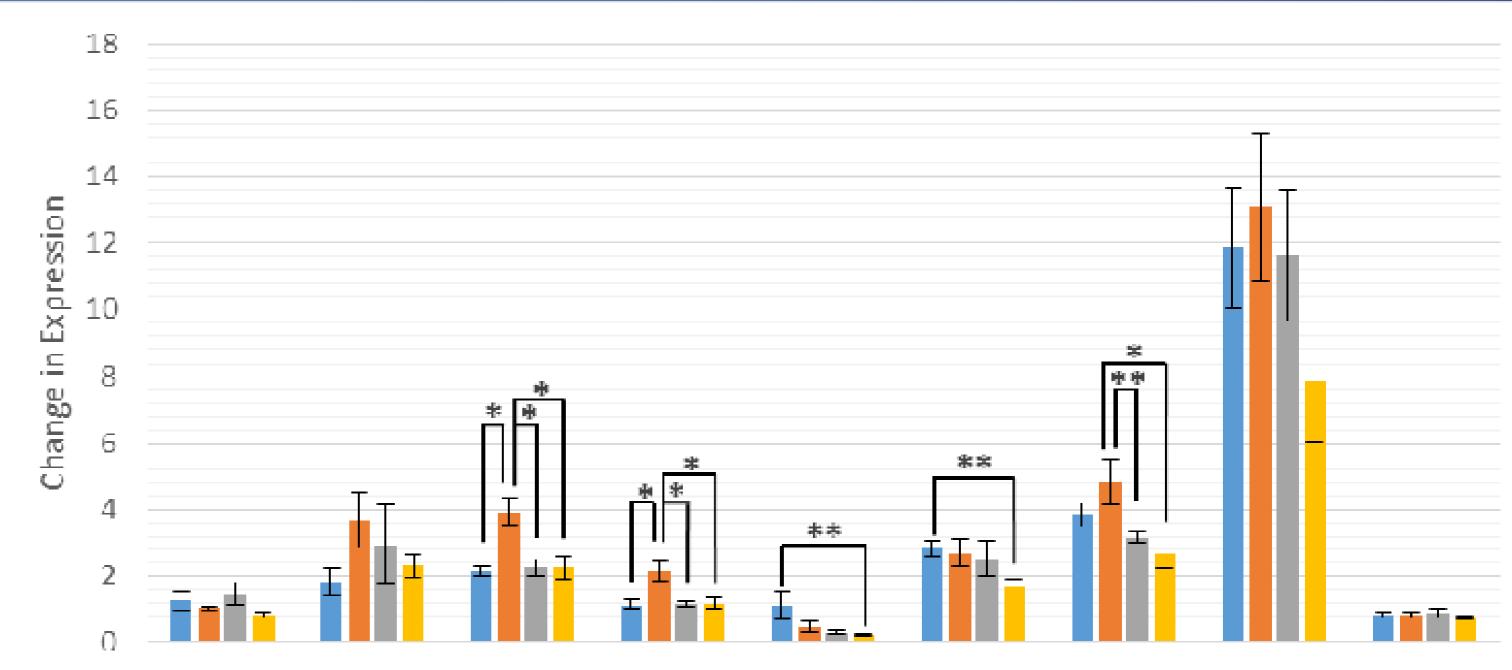
- Both animal livestock & humans are routinely exposed to a cocktail of environmental chemical pollutants. These include endocrine disrupting chemicals (EDCs) which can disrupt hormone synthesis or signaling¹.
- EDCs can enter the fetal compartment², potentially affecting development of fetal endocrine organs³ & programming of adult disease⁴.
- Steroid hormones made in the fetal adrenal gland regulate the oestrogenic milieu of pregnancy, maturation of other fetal organs & onset of parturition, so that altered steroid hormone levels could disrupt these proceses⁵.
- EDCs are present in dried sewage sludge pellets, a biosolid by-product of

Methods

• *PTCHD1, SHH, STAR, HSD3β2, HSD11β1, HSD11β2, CYP11A1, CYP17A1 & MR* expression in e110 ovine fetal adrenals was determined by QRT-PCR, based on a literature search for key regulatory steps. Normally-distributed data was analysed by one-way ANOVA & Tukey's post-hoc tests to assess significance.

soil water purification, commonly used as a fertiliser on livestock pasture⁶.

- Texel sheep were chosen as a large animal model of EDC exposure due to their similar fetal development & gestation period to humans^{2,3,4}.
- The study aim was to compare steroidogenic gene expression in e110 ovine fetal adrenals from mothers exposed before or during pregnancy to pasture treated with sewage sludge or an organic fertilizer control.


Candidate steroidogenic genes analysed

Candidate genes	Function of encoded protein	Changes in gene expression
PTCHD-1	Receptor for Shh Receptor	No significant change
SHH	Role in development and maintenance of the adrenal gland.	No significant change
STAR	Rate-limiting transport of cholesterol from outer to inner mitochondrial membrane.	Up-regulation in expression (CT vs all other groups p<0.01)
HSD362	Conversion of: pregnenolone to progesterone 17OH-pregnenolone to 17OH-progesterone DHEA to androstenedione	Up-regulation in expression (CT vs all other groups p<0.01)
HSD1161	Conversion of cortisone to cortisol 11-dehydrocorticosterone to corticosterone	Down-regulation in expression (TT vs CC group p<0.05)
HSD1182	Oxidation of cortisol to cortisone.	Down-regulation in expression (TT vs CC group p<0.05)
CYP11A1	Conversion of cholesterol to pregnenolone.	Up-regulation in expression (CT vs TT group p<0.01)
CYP17A1	Conversion of:	No significant change

C. Control (organic fertiliser)

T. Treatment (sewage sludge)

Sewage sludge exposure affects some steroidogenic genes

		progestero 170H-preg	one to 17OH-pregn one to 17OH-proges gnenolone to DHEA gesterone to andros	sterone,)		ہ o<0.01	*		62 HSD1161 HSD116 Candidate Gene	32 CYP11A1	CYP1/A1	MR
MR		Receptor fo glucocortio	or mineralocorticoi coids.	ds &	No significant change		p<0.05			CC CT TC TT			
		Human fet	tal adrena	l developi	ment	P	athwa	ays potentially	affected	by increased S ⁻	TAR & Cy	/p11A1	activity
	First trimester (weeks 1-12)		Second trimester (weeks 13-28)		Third trimester (weeks 29-40)	* st * c	AR/ /P11A1	Cholesterol	CYP17A1	17a-OH pregnenolor	CYP17A1	DHEA T DHE	SULT2A1
	Adrenal primordium formation	DHEAS secretion, neural crest cell migration,	Expanded fetal zone, increased DHEAS secretion,	Definitive zone, 3β-HSD2 expression, aldo	Transitional zone formation, 3β-HSD2 expression, cortisol secretion		BHSD	Progesterone -		17a-OH progesterone	Human only	► Androste	enedione 17BHSD
		encapsulation efinitive zone		secretion,			911B2	11-deoxycorticoste	erone	11-deoxycortisol		↓ Testo	sterone
Fetal adr	vascu	ortisol secretion, larisation acental shift				CYP	1181	Corticosterone		Cortisol	orrooponding		nificantly
	iuccurpi	accitai shijt						↓ Aldosterone		*Expression of co increase	ed following		

Discussion & conclusions

Discussion & conclusions

- STAR & HSD3β2 are significantly increased in CT vs other groups while CYP11A1 is also elevated, consistent with SSC-positive cell numbers⁷.
- Both HSD11β1 & HSD11β2 are decreased in TT exposure versus CC control groups, while PTCHD1, SHH & MR are unchanged, suggesting they are unaffected by maternal or fetal EDC exposure.
- STAR, CYP11A1 & HSD3β2 catalyse key regulatory or rate-limiting steps in the steroidogenic pathway. EDC-mediated upregulation may lead to increased progesterone & elevated cortisol production in sheep and cortisol & adrenal androgens in humans. Decreased HSD11β1 may reduce oxidation of cortisol to cortisone, maintaining high cortisol.
- Samples were collected at e110 (ovine term = e144-151) when the fetal adrenal is regulated by pituitary ACTH, but before the normal *prepartum* surge in fetal steroid concentrations.
- Fetal adrenal steroids (cortisol in sheep, DHEAS in higher primates) play key roles in parturition, driving increases in maternal plasma oestrogen & other factors accompanying the onset of normal spontaneous term labour. Potentially, precocious EDC-mediated elevation of steroids could perturb fetal organ maturation & predispose to preterm birth.

Acknowledgements:

We thank Cathal Grace for technical assistance, the Society for Endocrinology for awards of BES Registration Grants to EC & DC, Wellcome Trust grant 080388 to PAF, Neil P. Evans & Stewart M Rhind for sheep experimentation & tissue collection & the Charlie Walters Bequest Fund to SDM.

References:

(1) Sweeney T. Domest. Anim. Endocrin. 23, 203-209 (2002)
(2) Rhind SM, Kyle CE, Mackie C, *et al.* J. Enviro. Monitor., 12, 1582-1593 (2010)
(3) Bellingham M, Amezaga MR, Mandon-Pepin B, et al., Mol Cell Endocrinol. 376, 156-172 (2013).
(4) Harris A, Seckl J. J. Horm Behav. 59, 279-89 (2011)
(5) Ishimoto H, Jaffe RB. Endocr Rev. 32, 317-55 (2011)
(6) EU Council directive on the protection of the environment, 86/278/EEC (1986)
(7) Buckley CB, Danga M, Hogg K, et al. Endo Abstracts 28, P312 (2012)

