

Imperial College Healthcare NHS Trust

An Atypical Case of Non-Classical Congenital Adrenal Hyperplasia

Danielle Donoghue¹, Paul Yung¹, Vassiliki Bravis^{1,2}

1 Department of Metabolic Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust

2 Department of Endocrinology, Diabetes and Metabolism, Imperial College London

Introduction

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders that impair cortisol biosynthesis. In 95% of cases it is caused by mutations in *CYP21A2*, the gene encoding the adrenal steroid 21-hydroxylase enzyme.¹ Deficiency of 21-hydroxylase leads to an accumulation of cortisol precursors that get diverted to sex hormone biosynthesis.

Consequently there is a wide range of clinical features including adrenal insufficiency, genital ambiguity, infertility, short stature, hypertension and an increased risk of metabolic syndrome.²

21-hydroxylase deficiency is classified into 3 subtypes according to clinical severity: classic salt-wasting, classic simple virilising, and nonclassic CAH (mild/late onset).¹ Non-classic CAH is one of the most common autosomal recessive disorders in humans and affects approximately 1 in 1,000 individuals.³

Case Presentation

We present the case of a 28-year old woman, who presented with menstrual irregularity and hirsutism since menarche, at age 11. She had been treated with the oral contraceptive pill (*Dianettte*) for 12 years, in the context of a diagnosis of polycystic ovarian syndrome, despite BMI of 21 kg/m².

Investigations

Blood pressure was 101/66mmHg. Baseline electrolytes showed sodium 140mmol/L, potassium 3.6mmol/L. Testosterone level was 2.1 nmol/L. Short and long synachthen tests confirmed the biochemical diagnosis of CAH (Table 1 and 2). Prolonged oral glucose tolerance test was performed (Table 3), as she complained of hypoglycaemia-like symptoms, confirming hypoglycaemia at 3 hours post-glucose load (glucose 2.1mmol/L) with appropriate spontaneous recovery (glucose 4.1 mmol/L at 300min). Genetic testing confirmed non-classical CAH due to 21-hydroxylase deficiency. She was heterozygous for c.89C>T and c.841G>T with normal *CYP21A2* copy number.

Table 1: Short synacthen test

Time (min) Cartical (nmal/L) 17_bydrayyprogaetarona (nmal/L)

Table 2: Long synacthen test

Time (min) Cortical (nmal//L)

		I /-nyuloxyplogesterone (nnoi/L)
0	275	32.5
30	335	173.5
60	371	201.2

Table 3: Prolonged oral glucose tolerance test

Time (min)	0	30	60	90	120	150	180	210	240	270	300
Glucose (mmol/L)	4	6.6	4.6	3.3	3.7	3.3	2.1	3.2	3.7	3.8	4.1

0	356
30	389
60	488
240	534
360	586
440	815
2880	279

Follow up

She started Dexamethasone 0.25 mg daily and responded well. Androstenedione levels decreased to 11.4nmol/L. She is still complaining of fatigue in early evening and a cortisol day curve is scheduled to investigate need for a second dose of dexamethasone.

Discussion

Non-classic CYP21A2 deficiency is one of the most common autosomal recessive diseases. Non-classic CAH and polycystic ovarian syndrome may present similarly as hirsutism is the single most common symptom in patients with non-classic CAH followed by oligomenorrhea and acne.⁴

Despite general correlations, the CYP21A2 deficiency phenotype does not always correlate precisely with the genotype, suggesting that other genes influence the clinical manifestations. Women with late-onset form may be compound heterozygotes (classic mutation and a variant allele) or heterozygotes with two variant alleles, allowing for 20-60% of normal enzymatic activity.⁴ This leads to observation of a wide range of phenotypes. Women who are compound heterozygotes for two different CYP21A2 mutations usually have the phenotype associated with the less severe of the two genetic defects.⁴

References

1. Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism. 2010;95:4133–60.

2. Krone N, Arlt W. Genetics of congenital adrenal hyperplasia. Best Practice and Research: Clinical Endocrinology and Metabolism. 2009;23(2):181-92.

3, Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. American journal of human genetics. 1985;37:650–67.

4. Burdea L, Mendez MD. 21 Hydroxylase Deficiency. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493164/

