

BRAF V600E GENETIC MUTATION ANALYSIS FOR UNKNOWN MALIGNANCY POTENTIAL THYROID TUMORS AND PAPILLARY THYROID MICROCARCINOMAS

Sezer H¹, Cantürk Z¹, Ergül E², Tarkun İ^{1,} Cetinarslan B 1 Kocaeli University School of Medicine¹Department of Endocrinology and Metabolism and ²Medical Biology and Genetic KOCAELI/TURKEY

Aim: The purpose of this study was to analyze the clinicopathologic parameters BRAF V600E mutational status in PTMCs and UMP TTs. **Material and Method:** 72 PTMCs and 20 UMP TTs tissues were included in this study. Genomic DNA was extracted from parafin-embedded tumor tissue. The parafin-embedded thyroid tumor samples were cut into 5 µm sections. The tumor areas dewaxed and dissected. DNA was isolated using QIAamp® DNA FFPE tissue kit. We amplified exon 15 of the BRAF gene, which contains the BRAF V600E mutation with RFLP analysis by

Tumor Diameter UMPTT and PTMC Groups

	Groups	Ν	Min.	Max.	Mean	SS
	UMPTT Group	20	6	65	23,40	17,23
Tumor Diameter (mm)	PTMC Group	72	1	10	6,70	2,33

AKULT

CAELI

General Characteristics of UMPTT Group

using the following primers. The PCR products were electrophoresed in polyacrilamide gel. Samples were stained with silver nitrate and imaged. **Results:** BRAF V600E mutation frequency in PTMCs was % 41,6 (72/30), in UMP WDTs was % 80 (10/8). The BRAF V600E mutation was significantly associated with the classic variant of PTC % 73,3 (P= 0,047). Micro-PTCs BRAF positivitiy was significantly related to invasion of thyroid capsule % 66,67 (p=0,003) and absence of the tumor capsule % 80 (p=0,003). There was no significant correlation between the occurence of BRAF V600E mutation and advanced disease stages, extrathyroidal extension, cervical lymph node metastasis, age, gender, multifocality in PTMCs. The odd ratio for female sex in BRAF positive PTMCs was 2,46 for Hashimoto thyroiditis in BRAF positive PTMCs was 2,12.

Conclusion: BRAF mutation was significantly associated with the classic variant, absence of the tumor capsule and penetration of the thyroid capcule in PTMCs. UMP WDT lesions of the thyroid with BRAF mutation may represent PTC precursors or less aggressive type of PTCs. Tumor recurrence and poorer prognosis wasn't associated with BRAF V600E mutation after a median follow up of 22 months.

Demographic characteristic

Groups			n	%
Tumor Types	UMPTT	20		21,74
	РТМС	72		78,26
Sex	Male	22		23,91
	Female	70		76,09
Age at Diagnosis	<45 Yaş	38		41,30
	≥45 Yaş	54		58,70
Tumor Diameter (mm)	≤ 5 mm	25		27,17
	>	67		72,83
Radiation History	No	90		97,83
	Yes	2		2,17
Type of surgery	Lobectomy	2		2,17
	Total	00		07 02
	Thyroidectomy	90		97,83
Central Node Dissection	No	84		91,30
	Yes	8		8,70
Lateral Node Dissection	No	88		95,65
	Yes	4		4,35
BRAF Mutation	Mutant (Yes)	38		41,30
	Wild Type (No)	54		58,70
Hashimoto Thyroiditis	No	56		60,87
	Yes	36		39,13
Graves Disease	No	88		95,65
	Yes	4		4,35
Regional Metastasis	No	89		96,74
	Yes	3		3,26
Distant Organ Metastasis	No	91		98,91
	Yes	1		1,09
RAI Treatment	No	43		46,74
	Yes	49		53,26
Preoperative Diagnosis	No	39		42,39
	Yes	53		57,61

		n	%	
Sex	Male	10	50,00	
	Female	10	50,00	
Age	<45	12	60,00	
	≥45	8	40,00	
Histological subtype	UMPFT	10	50,00	
	UMPWDT	10	50,00	
Hashimoto Thyroiditis	No	17	85,00	
	Yes	3	15,00	
Graves Disease	No	17	85,00	
	Yes	3	15,00	
RAI Treatment	No	20	100,00	
Total Tiroidektomi	No	1	5,00	
	Yes	19	95,00	
Lobectomy	No	19	95,00	
	Yes	1	5,00	
Central Lymph Node	No	19	95,00	
Dissection	Yes	1	5,00	
BRAF Mutation	Wild Tip (No)	12	60,00	
	Mutant (Yes)	8	40,00	
Radiation History	No	19	95,00	
	Yes	1	5,00	
Some characteristic	s for BRAF (+)	and (-) UN	IPTT Groups	

Age	45,83±11,41	43,63±6,93	0,631
Follow Up (month)	18,91±11,29	22,5±11,76	0,510
Tumor Diameter (mm)	18,58±12,88	30,63±21,11	0,129
Pre op. TSH Level (mIU/L)	0,84±0,94	1,8±1,95	0,155

•REFERENCES

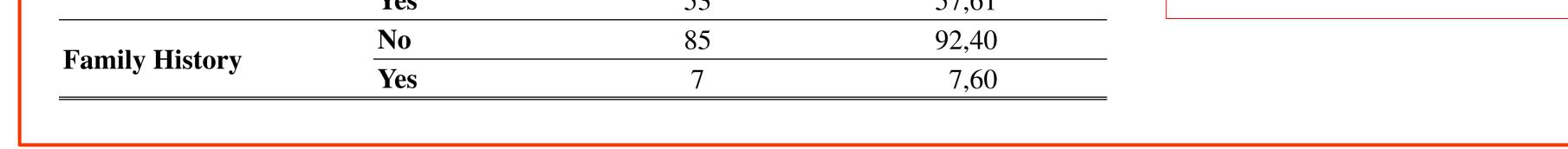
•Parma J, Dupreez L, Van Sande J, et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenoma. *Nature* 1993; **365**: 649.

•.O Sullivan C, Barton CM, Staddon SL, et al. Activating point mutations of the gsp oncogene in human thyroid adenomas. *Mol Carcinog* 1991; **4**: 435.

Suarez HG, du Villard JA, Caillou B, et al. Gsp mutations in human thyroid tumors. Oncogene 1991; 6:
677.

• Lyons J, Landis CA, Harsh G, et al. Two G protein oncogenes in human endocrine tumors. *Science* 1990; **249**: 655.

• Lemoine NR, Mayall ES, Wyllie FS, et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. *Oncogene* 1989; **4**: 159.


• Bignell GR, Canzian F, Shayeghi M et al. Familial nontoxic multinodular thyroid goiter locus to chromosome 14q but does not account for familial for nonmedulary thyroid cancer. *Am J Hum Genet* 1997; **61**: 1123.

•.Liem AA, Chamberlain MP, Wolf CR, Thompson AM. The role of signal transduction in cancer treatment and drug resistance. *EJSO* 2002; **28**: 679-84.

• Platanias LC. Map kinase signaling pathways and hematologic malignancies. *Blood* 2003; **101**: 4667-79.

•.Kolch W. Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. *Biochem J* 2000; **351**: 289-305.

•.Hoshino R, Chatani Y, Yamori T, et al. Constitutive activation of the mitogen-activated protein kinase signaling pathway in human tumours. *Oncogene* 1999; **18**: 813-822.

