rhAMH inhibits CYP19 and P450scc mRNA expression in granulosa-lutein cells treated with gonadotropin

<u>Sandro Sacchi</u>, Federica Marinaro, Daniela Tagliasacchi, Francesca Bastai, Tiziana Marsella, Cindy Argento, Alessandra Tirelli, Simone Giulini, Antonio La Marca

Mother-Infant Department, University of Modena and Reggio Emilia, 41100 Modena, Italy

Introduction

- Anti-Mullerian hormone (AMH) is a member of transforming growth factor β (TGF- β)
- Produced by human granulosa cells
- · AMH inhibits initiation of primordial follicle growth
- · AMH inhibits FSH-stimulated follicle growth
- Negative correlation between AMH retrieved in fluid from small antral follicles and *Cyp19A1* mRNA
- •AMH reduces the expression of aromatase *CYP19A1* induced by FSH
- Gonadotropins treatment (using LH or FSH) induce strong expression of both aromatases Cyp19A1 and P450scc

Material and Methods

hGLCs were purified from ovarian follicles of women undergoing in vitro fertilization protocol through a Percoll density gradient then maintained in culture for 6 days to allow the recovery of response to gonadotropins.

The primary hGLCs colture were then incubated for further 24 hours with increasing dosage of rhAMH (range 2-200 ng/ml) to asses the basal transcriptional response of both enzymes. Alternatively, hGLCs were treated for 24 hours with 5 ng/ml of rLH or FSH alone or in combination, and then AMH at a concentration of 10 ng/ml was added to colture.

Samples collected from each treatment were processed for RNA extraction followed by retrotranscription to cDNA then evaluated by RT-qPCR using specific pairs of primers. The expression level of both *Cyp19A1* and *P450scc* genes expressed as number of fold changes was normalized by housekeeping gene RPS7. Negative controls were included.

Results

As shown in Figures 1 - 2 rhAMH was unable to modulate the basal expression of both *P450scc* and *Cyp19A1* in any concentration tested. *P450scc* (Fig. 3) and *Cyp19A1* (Fig. 4) genes were strongly up regulated by rhLH (blue), rhFSH alone (yellow) and by the two goandotropins when combined (green bar). The effect of 20 ng/ml rhAMH (gray) added to the colture medium in presence of gonadotropins is also showed in Figs 3 and 4. AMH completely inhibited the postive effect of gonadotropins on *P450scc* and *Cyp19A1* expression.

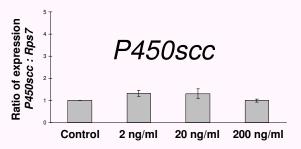


Fig. 1 Effect of increasing concentrations (range $2-200\,$ ng/ml) of rhAMH on P450scc expression in hGLCs after 24 hours incubation

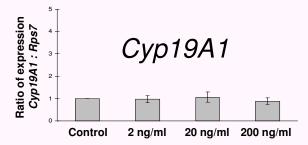
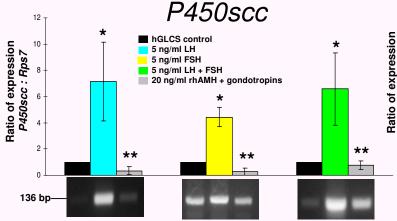
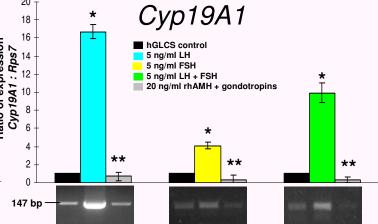




Fig. 2 Effect of increasing concentrations (range 2-200 ng/ml) of rhAMH on Cyp19A1 expression in hGLCs after 24 hours incubation

Fig. 3 Effect of gonadotropins and rhAMH alone or combined on *P450scc* expression in hGLCs after 24 hours incubation.

Fig. 4 Effect of gonadotropins and rhAMH alone or combined on *Cyp19A1* expression in hGLCs after 24 hours incubation.

Conclusion

rhAMH reduced the strong transcriptional up regulation of *P450scc* and *Cyp19A1* genes generated by gonadotropins treatment (alone and combined) impairing the enzymes response although rhAMH alone did not affect thier basal expression in any of the concentrations tested.