Morbimortality of hospitalized patients receiving parenteral nutrition and presenting hyponatremia.

Gómez Hoyos E¹, Matía Martín P², Cuesta Hernández M², Ortola Buigues A², Crespo Hernández I², Pérez Ferre N², Rubio Herrera MA², De Luis Roman DA¹, Calle Pascual A², Runkle de la Vega I².

Endocrinology Service. ¹Clinico Universitario Hospital. Valladolid.

²Clinico San Carlos Hospital. Madrid. Spain

INTRODUCTION

Hyponatremia is the most frequent electrolyte disorder found in clinical practice, and has been associated with increased morbimortalty. Hyponatremia is even more common among patients receiving parenteral nutricion(PN), a therapy increasingly in use. However, the morbimortality of hyponatremic patients on PN is unknown

METHODS

Retrospective study, selecting all patients receiving PN in a teaching hospital from 01/11/11 to 01/06/12. We evaluated hospital length-of-stay (LOS), in-hospital mortality, serum Sodium (SNa) at admittance, at start and end of PN, and at discharge. Hyponatremia defined as glycemia- corrected SNa < 135 mmol/L, triglycerides<400mg/dl. Data analysis: X², T-test, Mann Whitney U, Logistic

regression. SPSS 15

RESULTS

222 patients received PN (57,2% males). Median age 75 [61-82] years.14.5% presented malnutrition (by BMI). Charlson index was 3.3 (SD 2.4). LOS was 30 [20-40] days. Mortality was 17.7%. 50.4%(112/222) presented hyponatremia in at least one SNa determination, 27% in at least 25% of SNas, 15.7% in at least 50% of SNas, and 3% in at least 75% of SNa. Mortality rate and LOS ≤30 days distribution depending on the presence of hyponatremia in the mínimun, 25, 50 and 75 th percentile (P) of all SNa in each patient (Table n°1 and n°2). Logistic regression analysis of mortality and LOS ≤30 days depending the presence of hyponatremia in the minimun and 25, 50 and 75 th P of all SNa in each patient, ajusted by age, gender, Charlson index and BMI (Table n° 3 and 4).

	n	MORTALITY	p
SNa _{in} Minimun			
≥ 135	110	13 (11,8%)	
<135	112	26(23,2%)	0,019
SNa _{in} 25thP			
≥ 135	162	27 (16,7%)	
<135	62	12(20%)	0,346
SNa _{in} 50thP			
≥ 135	187	30 (16%)	
<135	35	9(25,8%)	0,129
SNa _{in} 75thP			
≥ 135	215	36(16,7%)	
<135	7	3(42,9%)	0,088

Table no 1: Mortality rate distribution depending on the presence of hyponatremia in the mininum, 25, 50 and 75 The percentile (P) of all SNa in each patient.

SNa <135 vs ≥ 135 mmol/L	ODDS RATIO	IC 95%	p
Minimun	1,8	0,80 - 4,08	0,154
25th P	1,03	0,44-2,40	0,946
50th P	1,75	0,66-4,64	0,257
75th P	7,38	1,07-50,78	0,042

Table n°3. Logistic regression analysis of mortality depending the presence of hyponatremia in the minimun and 25, 50 and 75 th P of all SNa in each patient, ajusted by age, gender, Charlson index and BMI.

	n	LOS ≤ 30 days	p
SNa _{in} Minimun			
≥ 135	110	80(72,7%)	
<135	112	48(42,8%)	0,001
SNa _{in} 25thP			
≥ 135	162	103(63,9%)	
<135	60	25(41,7%)	0,003
SNa _{in} 50thP			
≥ 135	187	114(70%)	
<135	35	14(40%)	0,018
SNa _{in} 75thP			
≥ 135	215	125(58,1%)	
<135	7	3(42,9%)	0,334

Table nº 2: LOS ≤ 30 days distribution depending on the presence of hyponatremia in the mininum, 25, 50 and 75 The percentile (P) of all NaS in each patient.

SNa ≥ 135 vs < 135 mmol/L	ODDS RATIO	IC 95%	p
Minimun	3,86	2,03-7,38	0,001
25th P	2,73	1,43-5,22	0,002
50th P	2,78	1,22-6,31	0,015
75th P	2,6	0,44-15,31	0,284

Table n°4. Logistic regression analysis of LOS ≤30 days depending the presence of hyponatremia in the minimun and 25, 50 and 75 th P of all SNa in each patient, ajusted by age, gender, Charlson index and BMI.

CONCLUSIONS

The presence of sustained hyponatremia is independently associated with increased mortality in patients receiving parenteral nutrition. The absence of hyponatremia is independently associated with a shorter hospital length-of-stay. Hyponatremia should not be overlooked in PN patients.

